Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33122134

RESUMO

It is widely known that metals can alter enzyme functioning, however, little is known about the mechanisms of metal toxicity in energy metabolism enzymes of corals. Thus, the present study had two objectives: firstly, we evaluated the activity of eight metabolic enzymes of the coral Mussismilia harttii to clarify metabolic functioning under field conditions. After that, we investigated the in vitro effect of copper (Cu) exposure in the activity of an enzyme representative of each metabolism stage. We evaluated enzymes involved in glycolysis (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK and lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS and isocitrate dehydrogenase, IDH), electron transport chain (electron transport system activity, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). The in vitro tests were performed through contamination of the reaction medium using Cu concentrations of 0, 1.4, 3.7 and 14.2 µg L-1. The results showed that M. harttii has elevated activity of HK, PK and CS in field conditions compared to the activity of other energy metabolism enzymes evaluated. Moreover, lower activities of LDH and ETS in exposed samples were observed. In conclusion, in field conditions this species has elevated aerobic metabolism and glucose may be an important energetic fuel. Also, exposure to Cu in vitro caused inhibition of LDH and ETS by direct binding.


Assuntos
Antozoários/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antozoários/enzimologia , Antozoários/metabolismo , Citrato (si)-Sintase/metabolismo , Cobre/toxicidade , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Piruvato Quinase/metabolismo
2.
J Biol Chem ; 295(43): 14578-14591, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32788218

RESUMO

Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.


Assuntos
Antozoários/enzimologia , Caspases/metabolismo , Sequência de Aminoácidos , Animais , Antozoários/química , Antozoários/citologia , Antozoários/metabolismo , Apoptose , Caspases/química , Recifes de Corais , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Especificidade por Substrato
3.
Biochem Biophys Res Commun ; 525(3): 576-580, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115151

RESUMO

Coral calcification is intricately linked to the chemical composition of the fluid in the extracellular calcifying medium (ECM), which is situated between the calcifying cells and the skeleton. Here we demonstrate that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) is expressed in calcifying cells of the coral Stylophora pistillata. Furthermore, pharmacological inhibition of sAC in coral microcolonies resulted in acidification of the ECM as estimated by the pH-sensitive ratiometric indicator SNARF, and decreased calcification rates, as estimated by calcein labeling of crystal growth. These results indicate that sAC activity modulates some of the molecular machinery involved in producing the coral skeleton, which could include ion-transporting proteins and vesicular transport. To our knowledge this is the first study to directly demonstrate biological regulation of the alkaline pH of the coral ECM and its correlation with calcification.


Assuntos
Equilíbrio Ácido-Base , Adenilil Ciclases/metabolismo , Antozoários/enzimologia , Antozoários/fisiologia , Calcificação Fisiológica , Equilíbrio Ácido-Base/efeitos dos fármacos , Inibidores de Adenilil Ciclases/farmacologia , Álcalis/metabolismo , Animais , Antozoários/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Solubilidade
4.
Arch Biochem Biophys ; 676: 108126, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31589830

RESUMO

A catalase-related allene oxide synthase (cAOS) or a hydroperoxide lyase (cHPL) fused together with an 8R-lipoxygenase is involved in the stress signaling of corals via an arachidonic acid pathway. cAOS gives rise to α-ketol and cyclopentenone, while cHPL catalyzes the cleavage of 8R-hydroperoxyeicosatetraenoic acid (8R-HpETE) to C8-oxo acid and C12 aldehyde. In silico analysis of the substrate entry sites of highly identical coral cAOS and cHPL indicated that two positively charged residues of cAOS, K60 and K107, and the corresponding residues of cHPL, E60 and K107, may be involved in the anchoring of the carboxy group of polyunsaturated fatty acid (PUFA) hydroperoxides. A mutational analysis of cAOS and cHPL revealed that K60 or E60 and K107 were not necessary in the tethering of 8R-HpETE, however, the E60 of cHPL was essential in the productive binding of PUFA hydroperoxides. The substrate preferences of cAOS and cHPL were determined with hydroperoxy derivatives of C18, C20, C22 PUFAs, anandamide (AEA), 1-arachidonoyl glycerol (1-AG) and selected methylated substrates. Although cAOS and cHPL were able to metabolize different free PUFA substrates and arachidonoyl derivatives, only cHPL catalyzed the reaction with methylated PUFA hydroperoxides. The differences in the substrate binding and preferences between cAOS and cHPL can be explained by the distinct properties of their substrate entry sites. The current study demonstrated that homologous PUFA metabolizing enzymes may contribute to the versatile usage of the substrate pool.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Catalase/química , Catalase/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Homologia de Sequência de Aminoácidos , Animais , Antozoários/enzimologia , Simulação por Computador , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato
5.
Sci Rep ; 9(1): 14652, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601940

RESUMO

The receptor guanylate cyclases (rGCs) in animals serve as sensitive chemoreceptors to detect both chemical and environmental cues. In reproduction, rGCs were shown to be expressed on sperm and serve as receptors for egg-derived sperm-activating and sperm-attracting factors in some echinoderms and mammals. However, sperm-associated rGCs have only been identified in some deuterostomes thus far, and it remains unclear how widely rGCs are utilized in metazoan reproduction. To address this issue, this study investigated the existence and expression of rGCs, particularly asking if rGCs are involved in the reproduction of a basal metazoan, phylum Cnidaria, using the stony coral Euphyllia ancora. Six paralogous rGCs were identified from a transcriptome database of E. ancora, and one of the rGCs, GC-A, was shown to be specifically expressed in the testis. Immunohistochemical analyses demonstrated that E. ancora GC-A protein was expressed in the spermatocytes and spermatids and eventually congregated on the sperm flagella during spermatogenesis. These findings suggest that GC-A may be involved in the regulation of sperm activity and/or functions (e.g., fertilization) in corals. This study is the first to perform molecular characterization of rGCs in cnidarians and provides evidence for the possible involvement of rGCs in the reproduction of basal metazoans.


Assuntos
Antozoários/crescimento & desenvolvimento , Receptores Acoplados a Guanilato Ciclase/metabolismo , Cauda do Espermatozoide/enzimologia , Animais , Antozoários/enzimologia , Antozoários/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/isolamento & purificação , Espermatogênese
6.
Chemosphere ; 236: 124420, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545208

RESUMO

The combined effects of exposure to increasing temperature and copper (Cu) concentrations were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii. Endpoints analyzed included activity of enzymes involved in glycolysis (pyruvate kinase, PK; lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS; isocitrate dehydrogenase; IDH), electron transport chain (electron transport system, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). Coral polyps were kept under control conditions (25.0 ±â€¯0.1 °C; 2.9 ±â€¯0.7 µg/L Cu) or exposed to combined treatments of increasing temperature (26.6 ±â€¯0.1 °C and 27.3 ±â€¯0.1 °C) and concentrations of dissolved Cu (5.4 ±â€¯0.9 and 8.6 ±â€¯0.3 µg/L) for 4 and 12 days using a mesocosm system. PK activity was not affected by stressors. LDH, CS, IDH, ETS and G6PDH activities were temporally inhibited by stressors alone. CS, ETS and G6PDH activities remained inhibited by the combination of stressors after 12 days. Furthermore, all combinations between increasing temperature and exposure Cu were synergistic after prolonged exposure. Taken together, stressors applied alone led to temporary inhibitory effects on energy metabolism enzymes of the coral M. harttii, however, prolonged exposure reveals strong deleterious effects over the metabolism of corals due to the combination of stressors. The present study is the first one to give insights into the combined effects of increasing temperature and Cu exposure in the energy metabolism enzymes of a scleractinian coral. Findings suggest that moderate Cu contamination in future increasing temperature scenarios can be worrying for aerobic and oxidative metabolism of M. harttii.


Assuntos
Antozoários/enzimologia , Cobre/farmacologia , Metabolismo Energético , Temperatura , Animais , Antozoários/efeitos dos fármacos , Ciclo do Ácido Cítrico , Glicólise , L-Lactato Desidrogenase/metabolismo , Via de Pentose Fosfato , Poluentes Químicos da Água/farmacologia
7.
Chemosphere ; 227: 598-605, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31009866

RESUMO

Coral reefs are subjected to climate change and are severely impacted by human activities, with copper (Cu) being a relevant physiological stressor for corals at local scale. The ecological relevance of parameters measured at biochemical or cellular level is now considered an extremely important feature in environmental studies, and can be used as early warning signs of environmental degradation. In this context, the effects of acute exposure (96 h) to Cu were assessed on the maximum photochemical efficiency of zooxanthellae (Fv/Fm) and on the activity of key enzymes [carbonic anhydrase (CA) and Ca-ATPase] involved in coral physiology using the scleractinian coral Mussismilia harttii as a biological model. Corals were exposed to different concentrations of dissolved Cu (4.6-19.4 µg/L) using two different experimental approaches: a laboratory closed system and a marine mesocosm system. Fv/Fm values and Ca - ATPase activity were not affect by exposure to Cu in any of the exposure systems. However, a significant reduction in CA activity was observed in corals exposed to 11.9 and 19.4 µg Cu/L in the laboratory and at all concentrations of Cu tested in the mesocosm system (4.6, 6.0 and 8.5 µg/L). Based on the sensitivity of this enzyme to the short period of exposure to sublethal concentrations of Cu in both experimental approaches, the present study suggests the use of CA activity as a potential biomarker to be used in biomarker-based environmental monitoring programs in coral reefs.


Assuntos
Antozoários/efeitos dos fármacos , Anidrases Carbônicas/metabolismo , Cobre/toxicidade , Recifes de Corais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Animais , Antozoários/enzimologia , Oceano Atlântico , Biomarcadores/metabolismo , Brasil , Humanos , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
8.
PLoS One ; 14(4): e0216134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31034531

RESUMO

The asparaginyl hydroxylase, Factor Inhibiting HIF (FIH), is a cellular dioxygenase. Originally identified as oxygen sensor in the cellular response to hypoxia, where FIH acts as a repressor of the hypoxia inducible transcription factor alpha (HIF-α) proteins through asparaginyl hydroxylation, FIH also hydroxylates many proteins that contain ankyrin repeat domains (ARDs). Given FIH's promiscuity and the unclear functional effects of ARD hydroxylation, the biological relevance of HIF-α and ARD hydroxylation remains uncertain. Here, we have employed evolutionary and enzymatic analyses of FIH, and both HIF-α and ARD-containing substrates, in a broad range of metazoa to better understand their conservation and functional importance. Utilising Tribolium castaneum and Acropora millepora, we provide evidence that FIH from both species are able to hydroxylate HIF-α proteins, supporting conservation of this function beyond vertebrates. We further demonstrate that T. castaneum and A. millepora FIH homologs can also hydroxylate specific ARD proteins. Significantly, FIH is also conserved in several species with inefficiently-targeted or absent HIF, supporting the hypothesis of important HIF-independent functions for FIH. Overall, these data show that while oxygen-dependent HIF-α hydroxylation by FIH is highly conserved in many species, HIF-independent roles for FIH have evolved in others.


Assuntos
Antozoários/enzimologia , Sequência Conservada , Oxigenases de Função Mista/metabolismo , Tribolium/enzimologia , Sequência de Aminoácidos , Animais , Repetição de Anquirina , Hipóxia Celular , Evolução Molecular , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/química , Ligação Proteica , Transdução de Sinais , Especificidade por Substrato
9.
Environ Pollut ; 243(Pt A): 66-74, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172125

RESUMO

Microplastics are widespread emerging contaminants that have been found globally in the marine and freshwater ecosystem, but there is limited knowledge regarding its impact on coral reef ecosystem and underpinning mechanism. In the present study, using Pocillopora damicornis as a model, we investigated cytological, physiological, and molecular responses of a scleractinian coral to acute microplastic exposure. No significant changes were observed in the density of symbiotic zooxanthellae during the entire period of microplastic exposure, while its chlorophyll content increased significantly at 12 h of microplastic exposure. We observed significant increases in the activities of antioxidant enzymes such as superoxide dismutase and catalase, significant decrease in the detoxifying enzyme glutathione S-transferase and the immune enzyme alkaline phosphatase, but no change in the other immune enzyme phenoloxidase during the whole experiment period. Transcriptomic analysis revealed 134 significantly up-regulated coral genes at 12 h after the exposure, enriched in 11 GO terms mostly related to stress response, zymogen granule, and JNK signal pathway. Meanwhile, 215 coral genes were significantly down-regulated at 12 h after exposure, enriched in 25 GO terms involved in sterol transport and EGF-ERK1/2 signal pathway. In contrast, only 12 zooxanthella genes exhibited significant up-regulation and 95 genes down-regulation at 12 h after the microplastic exposure; genes regulating synthesis and export of glucose and amino acids were not impacted. These results suggest that acute exposure of microplastics can activate the stress response of the scleractinian coral P. damicornis, and repress its detoxification and immune system through the JNK and ERK signal pathways. These demonstrate that microplastic exposure can compromise the anti-stress capacity and immune system of the scleractinian coral P. damicornis, despite the minimal impact on the abundance and major photosynthate translocation transporters of the symbiont in the short term.


Assuntos
Antozoários/imunologia , Antozoários/fisiologia , Plásticos/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Antozoários/enzimologia , Antozoários/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Glutationa Transferase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Superóxido Dismutase/metabolismo
10.
Int J Mol Sci ; 19(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037122

RESUMO

Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes used by living organisms to accelerate the CO2 hydration/dehydration reaction at rates dramatically high compared to the uncatalyzed reaction. These enzymes have different isoforms and homologues and can be found in the form of cytoplasmic, secreted or membrane-bound proteins. CAs play a role in numerous physiological processes including biomineralization and symbiosis, as is the case in reef-building corals. Previously, molecular and biochemical data have been obtained at the molecular level in the branching coral Stylophora pistillata for two coral isoforms which differ significantly in their catalytic activity and susceptibility to inhibition with anions and sulfonamides. More recently it has been determined that the genome of S. pistillata encodes for 16 CAs. Here, we cloned, expressed, purified and characterized a novel α-CA, named SpiCA3, which is cytoplasmic and ubiquitously expressed in all the cell layers including the calcifying cells. SpiCA3 is the most effective CA among the coral isoforms investigated and the most efficient catalyst known up to date in Metazoa. We also investigated the inhibition profiles of SpiCA3 and compared it with those obtained for the two other isoforms in the presence of inorganic anions and other small molecules known to interfere with metalloenzymes. These results suggest that S. pistillata has adapted its CA isoforms to achieve the physiological functions in different physicochemical microenvironments.


Assuntos
Antozoários/enzimologia , Anidrases Carbônicas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Proteínas Recombinantes/genética
11.
Cell Stress Chaperones ; 23(5): 1093-1100, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29948929

RESUMO

Atmospheric concentration of carbon dioxide (CO2) is increasing at an unprecedented rate and subsequently leading to ocean acidification. Concomitantly, ocean warming is intensifying, leading to serious and predictable biological impairments over marine biota. Reef-building corals have proven to be very vulnerable to climate change, but little is known about the resilience of non-reef-building species. In this study, we investigated the effects of ocean warming and acidification on the antioxidant enzyme activity (CAT-catalase, and GST-glutathione S-transferase), lipid peroxidation (using malondialdehyde, MDA-levels as a biomarker) and heat shock response (HSP70/HSC70 content) of the octocoral Veretillum cynomorium. After 60 days of acclimation, no mortalities were registered in all treatments. Moreover, CAT and GST activities, as well as MDA levels, did not change significantly under warming and/or acidification. Heat shock response was significantly enhanced under warming, but high CO2 did not have a significant effect. Contrasting to many of their tropical coral-reef relatives, our findings suggest that temperate shallow-living octocorals may be able to physiologically withstand future conditions of increased temperature and acidification.


Assuntos
Aclimatação , Antozoários/metabolismo , Temperatura Alta , Animais , Antozoários/enzimologia , Catalase/metabolismo , Mudança Climática , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Oceanos e Mares
12.
Mar Drugs ; 16(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899267

RESUMO

Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis, looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.


Assuntos
Antozoários/enzimologia , Organismos Aquáticos/enzimologia , Produtos Biológicos , Enzimas/genética , Animais , Antozoários/genética , Organismos Aquáticos/genética , Biocatálise , Biotecnologia/métodos , Enzimas/metabolismo , Química Verde/métodos , Indústrias/métodos , Transcriptoma
13.
Bioorg Chem ; 76: 281-287, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223031

RESUMO

CruCA4 is a secreted isoform of the α-carbonic anhydrase (CA, EC 4.2.1.1) family, which has been identified in the octocoral Corallium rubrum. This enzyme is involved in the calcification process leading to the formation of the coral calcium carbonate skeleton. We report here experiments performed on the recombinant CruCA4 with the technique of protonography that can be used to detect in a simple way the enzyme activity. We have also investigated the inhibition profile of CruCA4 with one major class of CA inhibitors, the inorganic anions. A range of weak and moderate inhibitors have been identified having KI in the range of 1-100 mM, among which the halides, pseudohalides, bicarbonate, sulfate, nitrate, nitrite, and many complex inorganic anions. Stronger inhibitors were sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethylditiocarbamate, which showed a better affinity for this enzyme, with KI in the range of 75 µM-0.60 mM. All these anions/small molecules probably coordinate to the Zn(II) ion within the CA active site as enzyme inhibition mechanism.


Assuntos
Antozoários/enzimologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Sequência de Aminoácidos , Animais , Ânions/química , Anidrases Carbônicas/isolamento & purificação , Catálise , Domínio Catalítico , Cinética , Zinco/química
14.
Protein J ; 36(6): 502-512, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022133

RESUMO

The cDNA sequence of arginine kinase (AK) from the precious coral Corallium rubrum was assembled from transcriptome sequence data, and the deduced amino acid sequence of 364 residues was shown to conserve the structural features characteristic of AK. Based on the amino acid sequence, the DNA coding C. rubrum AK was synthesized by overlap extension PCR to prepare the recombinant enzyme. The following kinetic parameters were determined for the C. rubrum enzyme: K aArg (0.10 mM), K iaArg (0.79 mM), K aATP (0.23 mM), K iaATP (2.16 mM), and k cat (74.3 s-1). These are comparable with the kinetic parameters of other AKs. However, phylogenetic analysis suggested that the C. rubrum AK sequence has a distinct origin from that of other known cnidarian AKs with unusual two-domain structure. Using oligomers designed from the sequence of C. rubrum AK, the coding region of genomic DNA of another coral Paracorallium japonicum AK was successfully amplified. Although the nucleotide sequences differed between the two AKs at 14 positions in the coding region, all involved synonymous substitutions, giving the identical amino acid sequence. The P. japonicum AK gene contained one intron at a unique position compared with other cnidarian AK genes. Together with the observations from phylogenetic analysis, the comparison of exon/intron organization supports the idea that two distinct AK gene lineages are present in cnidarians. The difference in the nucleotide sequence between the coding regions of C. rubrum and P. japonicum AKs was 1.28%, which is twice that (0.54%) of mitochondrial DNA, is consistent with the general observation that the mitochondrial genome evolves slower than the nuclear one in cnidarians.


Assuntos
Antozoários/enzimologia , Antozoários/genética , Arginina Quinase/genética , Proteínas Recombinantes/genética , Animais , Antozoários/classificação , Arginina Quinase/química , Arginina Quinase/metabolismo , DNA Complementar/genética , Escherichia coli/genética , Evolução Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
15.
PLoS One ; 12(9): e0185291, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28953966

RESUMO

Two highly identical fusion proteins, an allene oxide synthase-lipoxygenase (AOS-LOX) and a hydroperoxide lyase-lipoxygenase (HPL-LOX), were identified in the soft coral Capnella imbricata. Both enzymes initially catalyze the formation of 8R-hydroperoxy-eicosatetraenoic acid (8R-HpETE) from arachidonic acid by the C-terminal lipoxygenase (LOX) domain. Despite the fact that the defined catalytically important residues of N-terminal catalase-related allene oxide synthase (cAOS) domain are also conserved in C. imbricata hydroperoxide lyase (cHPL), their reaction specificities differ. In the present study, we tested which of the amino acid substitutions around the active site of cHPL are responsible for a control in the reaction specificity. The possible candidates were determined via comparative sequence and structural analysis of the substrate channel and the heme region of coral cAOSs and C. imbricata cHPL. The amino acid replacements in cHPL-R56G, ME59-60LK, P65A, F150L, YS176-177NL, I357V, and SSSAGE155-160PVKEGD-with the corresponding residues of cAOS were conducted by site-directed mutagenesis. Although all these mutations influenced the catalytic efficiency of cHPL, only F150L and YS176-177NL substitutions caused a shift in the reaction specificity from HPL to AOS. The docking analysis of P. homomalla cAOS with 8R-HpETE substrate revealed that the Leu150 of cAOS interacts with the C5-C6 double bond and the Leu177 with the hydrophobic tail of 8R-HpETE. We propose that the corresponding residues in cHPL, Phe150 and Ser177, are involved in a proper coordination of the epoxy allylic radical intermediate necessary for aldehyde formation in the hydroperoxide lyase reaction.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Antozoários/enzimologia , Catalase/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Mutagênese Sítio-Dirigida/métodos , Aldeído Liases/isolamento & purificação , Sequência de Aminoácidos , Animais , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/metabolismo , Oxirredutases Intramoleculares/química , Cinética , Leucotrienos/química , Leucotrienos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Multimerização Proteica , Especificidade por Substrato
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1121-1128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28774821

RESUMO

Lipoxygenases (LOXs), participating in inflammatory processes and cancer, are a family of enzymes with high potential as drug targets. Various allosteric effects have been observed with different LOX isozymes (e.g. lipid/ATP binding, phosphorylation), yet there is a lot of uncertainty concerning the regulation of these enzymes. It has been recently found that a number of LOXs form dimers, extending the list of possible allosteric mechanisms with oligomerization. Coral 11R-LOX is, unlike several mammalian counterparts, a stable dimer in solution facilitating quaternary structure studies that demand high sample homogeneity. By combining previous crystallographic data of 11R-LOX with small-angle X-ray scattering and chemical cross-linking, we were able to narrow down the possible dimerization interfaces, and subsequently determined the correct assembly by site-directed mutagenesis of potential contacting residues. The region of interest is located in the vicinity of an α+ß formation in the catalytic domain, also coined the PDZ-like domain. Being situated just between the active site and the dimer interface, our results further implicate this putative subdomain in the regulation of LOXs.


Assuntos
Antozoários/enzimologia , Lipoxigenase/química , Multimerização Proteica , Animais , Domínio Catalítico , Domínios PDZ , Estrutura Quaternária de Proteína , Difração de Raios X
17.
Amino Acids ; 49(10): 1743-1754, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744579

RESUMO

Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.


Assuntos
Isomerases de Aminoácido , Antozoários , Proteínas de Artrópodes , Crassostrea , Mutação de Sentido Incorreto , Penaeidae , Racemases e Epimerases , Isomerases de Aminoácido/química , Isomerases de Aminoácido/genética , Substituição de Aminoácidos , Animais , Antozoários/enzimologia , Antozoários/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Crassostrea/enzimologia , Crassostrea/genética , Camundongos , Penaeidae/enzimologia , Penaeidae/genética , Estrutura Secundária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética
18.
PLoS One ; 12(3): e0173734, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278261

RESUMO

Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as 'homing'. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity. Moreover, they also explain the peculiar geographical patterns of introns in stony and mushroom corals.


Assuntos
Agaricales , Antozoários/enzimologia , Antozoários/genética , Evolução Biológica , Endonucleases/genética , Íntrons/genética , Filogeografia , Sequência de Aminoácidos , Animais , Antozoários/classificação , DNA Ribossômico/genética , Endonucleases/química , Endonucleases/isolamento & purificação , Endonucleases/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Filogenia , Proteólise , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
19.
ACS Chem Biol ; 12(1): 41-46, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28103686

RESUMO

Atmospheric dimethylsulfide (DMS) is massively produced in the oceans by bacteria, algae, and corals. To enable identification of DMS sources, we developed a potent mechanism-based inhibitor of the algal Alma dimethylsulfoniopropionate lyase family that does not inhibit known bacterial lyases. Its application to coral holobiont indicates that DMS originates from Alma lyase(s). This biochemical profiling may complement meta-genomics and transcriptomics to provide better understanding of the marine sulfur cycle.


Assuntos
Antozoários/metabolismo , Haptófitas/metabolismo , Sulfetos/metabolismo , Animais , Antozoários/efeitos dos fármacos , Antozoários/enzimologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/metabolismo , Liases de Carbono-Enxofre/antagonistas & inibidores , Liases de Carbono-Enxofre/metabolismo , Inibidores Enzimáticos/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/enzimologia , Oceanos e Mares
20.
Dis Aquat Organ ; 119(2): 153-61, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27137073

RESUMO

Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.


Assuntos
Antozoários/enzimologia , Antracenos/toxicidade , Catalase/metabolismo , Glutationa Transferase/metabolismo , Animais , Região do Caribe , Regulação Enzimológica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...